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Abstract. The Resource Description Framework (RDF) is a standard for con-
ceptually describing data on the Web, and SPARQL is the query language for
RDF. As RDF data continue to be published across heterogeneous domains and
integrated at Web-scale such as in the Linked Open Data (LOD) cloud, RDF data
management systems are being exposed to queries that are far more diverse and
workloads that are far more varied. The first contribution of our work is an in-
depth experimental analysis that shows existing SPARQL benchmarks are not
suitable for testing systems for diverse queries and varied workloads. To address
these shortcomings, our second contribution is the Waterloo SPARQL Diversity
Test Suite (WatDiv) that provides stress testing tools for RDF data management
systems. Using WatDiv, we have been able to reveal issues with existing sys-
tems that went unnoticed in evaluations using earlier benchmarks. Specifically,
our experiments with five popular RDF data management systems show that they
cannot deliver good performance uniformly across workloads. For some queries,
there can be as much as five orders of magnitude difference between the query
execution time of the fastest and the slowest system while the fastest system on
one query may unexpectedly time out on another query. By performing a detailed
analysis, we pinpoint these problems to specific types of queries and workloads.
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1 Introduction

With the proliferation of very large, heterogeneous RDF datasets such as those in the
Linked Open Data (LOD) cloud [6], there is increasing demand for high-performance
RDF data management systems. A number of such systems have been developed; how-
ever, as queries executed on these systems become increasingly more diverse [4], [10],
[16], these systems have started to display unpredictable behaviour, even to the ex-
tent that on some queries they time out (cf., Fig. 4). This behaviour is not captured
by existing benchmarks. The problem is that data that are handled by these RDF data
management systems have become far more heterogeneous [10], and web applications
that are supported by these systems have become far more varied [4], [16], but existing
benchmarks do not have the corresponding variability in their datasets and workloads.
Consequently, problems go undetected in evaluations using existing benchmarks until
systems are actually deployed. To address these shortcomings, we have designed the
Waterloo SPARQL Diversity Test Suite (WatDiv) that offers stress testing tools to re-
veal a much wider range of problems with RDF data management systems.
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Our contributions with WatDiv and the work leading up to its design can be summa-
rized in three steps. First, we introduce two classes of query features, namely, structural
(cf., Section 2.1) and data-driven features (cf., Section 2.2) that should be used to evalu-
ate the variability of the datasets and workloads in a SPARQL benchmark. More specif-
ically, with these features we differentiate as much as possible those types of queries
that may result in unpredictable system behaviour and are indicators of potential flaws
in physical design. For example, in a previous work, we illustrate that the choice of
physical design in an RDF system is very sensitive to the types of joins that the sys-
tem can efficiently support [2]. Hence, we introduce a feature called “join vertex type”.
Likewise, we note that a system’s performance depends on the characteristics of the
data as much as the query itself. Consequently, we introduce additional features that
capture multiple notions of selectivity and result cardinality.

Second, we have performed an in-depth analysis on existing SPARQL benchmarks
using the two classes of query features that we introduce. Our experimental evaluation
demonstrates that no single benchmark (including those that are based on actual query
logs) is sufficiently varied to test whether a system has consistently good performance
across diverse workloads (cf., Section 3). Furthermore, these benchmarks do not pro-
vide the tools to localize problems to specific types of queries if needed. For example,
it would be useful if one could diagnose that the system under test has problems with
queries that have a particular join vertex type, and drill down the evaluation if necessary.
These are exactly the type of evaluations that we aim to facilitate with WatDiv.

Third and last, we use WatDiv to experimentally evaluate five popular RDF data
management systems (cf., Section 5). Our discussion consists of two parts. First, we
demonstrate that evaluations using a diverse workload can help reveal problems about
systems that existing benchmarks cannot identify. Second, we show that by analyzing
results across one or more structural and data-driven features, it is possible to diagnose
and reason about specific problems—a feature not supported by any other benchmark.

2 Preliminaries

This section defines query features based on which we shall discuss the diversity of
SPARQL benchmark workloads. These features can be categorized into two classes:
(i) structural features and (ii) data-driven features. We assume the reader is familiar
with the RDF data model [21] and the SPARQL query language [14].

We define these features over a basic fragment of SPARQL, namely, basic graph pat-
terns (BGPs) with filter expressions. For the sake of brevity, we denote queries in this
fragment by a pair B̄ = 〈B,F 〉, hereafter, referred to as a constrained BGP (CBGP),
where B is a finite set of triple patterns (i.e., a BGP) and F is a finite set of SPARQL
filter expressions. Hence, by using the algebraic syntax for SPARQL [3], a CBGP
B̄ = 〈B,F 〉 with F = {f1, ... , fn} is equivalent to a SPARQL graph pattern P of the
form

(
(...(B FILTER f1)... )FILTER fn

)
(if F = ∅, then P is the BGP B). Consequently,

the evaluation of B̄ over an RDF graph G, denoted by [[B̄]]G, is the bag (multiset) of
solution mappings [[P ]]G as defined by the standard SPARQL query semantics [3], [14].

While a discussion of a more expressive fragment of SPARQL is certainly possible,
for our purposes, this is not necessary: the objective of our benchmark is stress testing,
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Fig. 1: Possible query structures

with an emphasis on revealing issues with the physical design of RDF data management
systems. To this end, we try to generate test queries that are as diverse as possible within
this basic fragment of SPARQL and deliberately avoid testing of complex functionality
such as filters, unions, aggregation and optional graph patterns.

2.1 Structural Features

Every BGP (as used by a CBGP) combines a set of triple patterns into one of numerous
query structures such as those in Fig. 1a–1c. As a basis for comparing the structural
diversity of different sets of CBGPs we introduce four features.

Triple Pattern Count: This feature refers to the number of triple patterns in (the BGP
of) a CBGP. Triple pattern count allows one to broadly distinguish between simple and
structurally complex queries. Ideally, we would like an RDF system to execute simple
queries extremely fast while scaling well with increasing number of triple patterns. In
fact, DBpedia query logs [17] reveal that while in general most queries contain only a
few triple patterns, users may issue (albeit infrequently) queries having more than 50
triple patterns.

Join Vertex Count: This feature represents the number of RDF terms (i.e., URIs,
literals, and blank nodes) and variables that are the subject or object of multiple triple
patterns in a CBGP. Hereafter, we refer to these terms and variables as join vertices
of the CBGP. Formally, if T and V denote the set of all RDF terms and the set of all
variables, respectively, an element x ∈ (T ∪ V) is a join vertex of CBGP B̄ = 〈B,F 〉
if there exist two distinct triple patterns tp = 〈s, p, o〉 and tp′ = 〈s′, p′, o′〉 such that
(i) tp ∈ B and tp′ ∈ B, (ii) x ∈ {s, o}, and (iii) x ∈ {s′, o′}.
Join Vertex Degree: For each join vertex x of a CBGP B̄ = 〈B,F 〉, the degree of x is
the number of triple patterns in B whose subject or object is x. Hereafter, for any such
triple pattern 〈s, p, o〉∈B with x∈{s, o} we say that the triple pattern is incident onx.

Join vertex count and join vertex degree offer a finer distinction of structural com-
plexity than the triple pattern count. For example, the two queries in Fig. 1a and Fig. 1b
have the same number of triple patterns but they differ in their join vertex count and
join vertex degrees. That is, Fig. 1a is a long linear-shaped query with multiple (4)
low-degree (2) join vertices, whereas Fig. 1b is a star-shaped query with a single high-
degree (5) join vertex. A system may show completely different performance for these
two queries and a benchmark should capture such blind spots if any.

Join Vertex Types: The data representation and indexing schemes employed by RDF
systems can result in completely different behaviour on different types of joins [2],
and a benchmark should include a sufficiently large sample of queries for each join
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type. Consequently, we distinguish the following three (mutually non-exclusive) types
of join vertices: A join vertex x of a CBGP B̄ = 〈B,F 〉 is of type SS+ if x = s for
every triple pattern 〈s, p, o〉 ∈ B that is incident on x; similarly, x is of type OO+ if
x = o for every 〈s, p, o〉 ∈ B that is incident on x; and x is of type SO+ if x = s
and x = o′ for two triple patterns 〈s, p, o〉 ∈ B and 〈s′, p′, o′〉 ∈ B (both of which are
incident on x, respectively). For example, the join vertices ?a, ?x and ?y in Fig. 1c have
types SS+, SO+and OO+, respectively.

2.2 Data-Driven Features

The structural query features (discussed above) are often not sufficient. More specifi-
cally, a system’s choice of a query (execution) plan depends on the characteristics of
the data as much as the query itself. For example, systems rely heavily on selectivity
and cardinality estimations for query plan optimization [23]. Consider the following
example: A system chooses to break down a BGP B = {tpA, tpB , tpC} into its triple
patterns and to execute them in a specific order, namely, tpA, tpB and then tpC . The
system picks this particular query plan because the subset of triples that match tpA is
smaller. Furthermore, it estimates the intermediate result cardinalities to be sufficiently
low and decides to use in-memory data structures and algorithms. To enumerate differ-
ent plan choices, we consider the following test cases:

– queries have a diverse mix of result cardinalities;
– a single or few triple patterns are very selective, while the remaining ones are not;
– all of the triple patterns in a query are almost equally selective (hence, there is a

higher probability that the optimizer picks a sub-optimal query plan due to estima-
tion errors); etc.

Next, we define result cardinality and notions of selectivity, and explain how we use
them in our evaluations to distinguish among such different test cases.
Result Cardinality: This feature represents the number of solutions in the result of
evaluating a CBGP B̄ = 〈B,F 〉 over an RDF graph G. Recall that this result, denoted
by [[B̄]]G, is a bag (multiset) of solution mappings (cf. Sec. 2.1). Consequently, if Ω
denotes the set underlying the bag [[B̄]]G and card[[B̄]]G denotes the function that maps
each solution mapping µ ∈ Ω to its cardinality in the bag [3], we define the result
cardinality of B̄ over G by

CARD(B̄,G) =
∑
µ∈Ω

card[[B̄]]G(µ). (1)

Filtered Triple Pattern Selectivity (f-TP Selectivity): Given some CBGP B̄ = 〈B,F 〉
and a BGP B∗ such that B∗ ⊆ B, we write λF(B∗) to denote the CBGP B̄′ = 〈B′, F ′〉
with B′ = B∗ and F ′ = {f ∈ F | vars(f) ⊆ vars(B∗)}, where vars(·) denotes the
variables in a filter expression or a BGP. Then, for any triple pattern tp ∈ B in a CBGP
B̄ = 〈B,F 〉, the f-TP selectivity of tp over an RDF graph G, denoted by SELFG(tp), is
the ratio of distinct solution mappings in [[λF({tp})]]G to the number of triples in G.
Formally, if Ω denotes the set underlying the (bag) query result [[λF({tp})]]G, then

SELFG(tp) = |Ω|/|G|. (2)
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In our evaluations, we use three related measures. We use the result cardinality of
a CBGP as it is defined, and we compute the mean and standard deviation of the f-
TP selectivities of the triple patterns in the CBGP. The latter is especially important in
distinguishing queries whose triple patterns are almost equally selective from queries
with varying f-TP selectivities.

While result cardinality and f-TP selectivity are useful features, they are not entirely
sufficient. More specifically, once a system picks a particular query plan and starts ex-
ecuting it, it is often the case that there are intermediate solution mappings which do
not make it to the final result. What this means is that all triple patterns of a CBGP
contribute to its overall “selectiveness”, or stated differently, in every join step, some
intermediate solution mappings are being pruned. Contrast this to another possible case
in which the overall “selectiveness” of a CBGP can be attributed to a single triple pat-
tern in that CBGP. In that case, a system could use runtime optimization techniques
such as sideways-information passing [18] to early-prune most of the intermediate re-
sults, which may not be possible in the original example (for a more detailed discussion
refer to [2]). From a testing point of view, it is important to include both cases. In fact,
in Section 5.5, we shall revisit this example and experimentally show that systems be-
have differently on these two cases. To capture these constraints, we study two more
features, namely BGP-restricted and join-restricted f-TP selectivity. The former is con-
cerned with how much a filtered triple pattern contributes to the overall “selectiveness”
of the query, whereas the latter is concerned with how much a filtered triple pattern con-
tributes to the overall “selectiveness” of the join(s) that it participates in. Just as we do
with f-TP selectivity, for our evaluations, we compute the mean and standard deviation
of these two features.

BGP-Restricted f-TP Selectivity: For any triple pattern tp ∈ B in a CBGP B̄ =
〈B,F 〉, the B̄-restricted f-TP selectivity of tp over an RDF graph G, which is denoted
by SELFG(tp | B̄), is the fraction of distinct solution mappings in [[λF({tp})]]G that are
compatible (as per standard SPARQL semantics [3]) with a solution mapping in the
query result [[B̄]]G. Formally, if Ω and Ω′ denote the sets underlying the (bag) query
results [[λF({tp})]]G and [[B̄]]G, respectively, then

SELFG(tp | B̄) =

∣∣{µ ∈ Ω | ∃µ′ ∈ Ω′ : µ and µ′ are compatible }
∣∣∣∣Ω∣∣ . (3)

Join-Restricted f-TP Selectivity: Given a CBGP B̄ = 〈B,F 〉, a join vertex x of B̄,
and a triple pattern tp ∈ B that is incident on x, the x-restricted f-TP selectivity of
tp over an RDF graph G, denoted by SELFG(tp |x), is the fraction of distinct solution
mappings in [[λF({tp})]]G that are compatible with a solution mapping in the (join)
query result [[λF(Bx)]]G with Bx ⊆ B being the subset of all the triple patterns in B
that are incident on x (i.e, Bx = {tp ∈ B | tp is incident on x}). Hence, if Ω and Ω′

denote the sets underlying [[λF({tp})]]G and [[λF(Bx)]]G, respectively, then

SELFG(tp |x) =

∣∣{µ ∈ Ω | ∃µ′ ∈ Ω′ : µ and µ′ are compatible }
∣∣∣∣Ω∣∣ . (4)
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3 Evaluation of Existing SPARQL Benchmarks

Even though existing SPARQL benchmarks [7], [12], [17], [20] offer valuable testing
capabilities, we demonstrate in this section that they are not suitable for stress testing
RDF systems. We consider the following 4 benchmarks:

– The Lehigh University Benchmark (LUBM) [12] was originally designed for testing
the inferencing capabilities of Semantic Web repositories.

– The Berlin SPARQL Benchmark (BSBM) [7] contains multiple use cases such as
(i) explore, (ii) update, and (iii) business intelligence use cases. Furthermore, it
goes into testing how well RDF systems support different (and important) SPARQL
features, namely, aggregation, union, and optional graph patterns.

– SP2Bench [20] tests various SPARQL features such as union and optional graph
patterns.

– The DBpedia SPARQL Benchmark [17] (DBSB) uses queries that have been gen-
erated by mining actual query logs over the DBpedia dataset [5]. Thus, it contains
a more “diverse set of queries” [17].

We assess the diversity of existing benchmarks using the structural and data-driven
features presented in Section 2. In our evaluations of benchmarks, we only consider
SELECT queries. For BSBM, we focused on the explore use case and generated 100
queries per query template. We observed this to be a sufficiently large sample to un-
derstand the general properties of BSBM. For DBSB, we analyzed a sample of 12500
queries that were drawn uniformly at random from the subset of SELECT queries in
the query logs (the other two benchmarks have a fixed number of queries). For Wat-
Div, we generate the same number of queries (12500). Recall that the query features
in Section 2 are defined over CBGPs. For this reason, when analyzing existing bench-
marks (with respect to these features), we first translate each complex non-CBGP query
into a CBGP by replacing OPT and UNION operators with AND. Hereafter, we refer to
these CBGPs (including those for which translation was not necessary) as the queries of
the benchmark. To compute the statistics reported in this section, for each benchmark,
we generated a benchmark-specific dataset of 1 million triples, and executed all of the
queries in the benchmark.

3.1 Evaluation Using Structural Features

Consider Fig. 2a, which compares queries in each benchmark with respect to their triple
pattern count (x-axis).1 Benchmarks are stacked along the y-axis. For each benchmark,
the presence of a point indicates that the benchmark contains at least one query with the
corresponding number of triple patterns indicated by the x-axis value. Fig. 2a–2c and
Fig. 3a– 3f should be read similarly. The actual distribution of queries with respect to
these features are available in the online version of this paper.2

1 For the time being ignore WatDiv in these figures. The results about WatDiv are not important
for this section. We discuss WatDiv in Section 4.

2 https://cs.uwaterloo.ca/˜galuc/watdiv/paper/

https://cs.uwaterloo.ca/~galuc/watdiv/paper/
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Fig. 2: Analysis w.r.t. structural features: in Fig. 2a–2c, each point indicates the presence
of a query with the corresponding x-axis value for a given feature.

While most benchmarks contain large queries with more than 10 triple patterns
(Fig. 2a)3, LUBM contains only small queries—not exceeding 6 triple patterns in cardi-
nality. Furthermore, LUBM’s join vertex count is also lower than the other benchmarks
(Fig. 2b). This is reasonable as LUBM is intended for semantic inferencing. In fact,
the true complexity of an LUBM query lies in its semantics, not in its structure. For
this reason, the suitability of LUBM for performance evaluation is limited if the system
under test does not support inferencing.

By considering mean join vertex degrees (Fig. 2c), we observe that DBSB is more
diverse than any of the synthetic benchmarks (i.e., LUBM, BSBM, SP2Bench). LUBM
contains fairly simple queries (cf., Fig. 2a), which explains why the mean join vertex
degree is also low for most of these queries. SP2Bench contains (i) linear queries that
are long, or (ii) star queries that are large and centered around a single join vertex, but
not much in between; hence, the join-vertex degree values are concentrated at the two
ends of the x-axis in Fig. 2c. BSBM contains queries that are a little bit more diverse in
their join vertex degrees, but it does not test the two extremes as SP2Bench does.

In Fig. 2d, we compare and contrast benchmarks with respect to the types of join
vertices present in each of the queries. This comparison reveals three problems: LUBM
does not contain any query with an OO+join; BSBM contains some, but their percent-
age is significantly low. In DBSB, queries with both OO+and SO+joins have a low
percentage. Consequently, these three benchmarks may be biased towards particular
physical designs that are more effective for SS+(or SO+) joins, which limits the suit-
ability of these benchmarks for stress tests.

3.2 Evaluation Using Data-Driven Features

Regarding result cardinality, the following observations can be made. BSBM contains
only low-cardinality queries, SP2Bench contains almost only high-cardinality queries,

3 Some DBSB queries have as many as 50 triple patterns, but for clarity of presentation we are
not displaying them.
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Fig. 3: Analysis w.r.t. data-driven features at 1 million triples: each point indicates the
presence of a query with the corresponding x-axis value for a given feature.

and LUBM contains only medium-cardinality queries (cf., Fig. 3a), which reveals an-
other limitation of what each of these three benchmarks can test individually.

Fig. 3b–3c show another issue with existing benchmarks. Although benchmarks
are fairly diverse with respect to f-TP selectivity (i.e., especially DBSB and BSBM),
the standard deviation of f-TP selectivities of filtered triple patterns (within any single
query) is generally high. As explained in Section 2.2, this implies that these benchmarks
are missing the test case in which the triple patterns are more or less equally selective.

As depicted in Fig. 3d, among the four benchmarks, only SP2Bench has a diverse
selection of queries regarding mean BGP-restricted f-TP. LUBM, BSBM and DBSB
have queries in which either the mean value is 1.0, indicating that each triple pattern
in separation does not contribute to the selectiveness of the query, or the mean is ex-
tremely low, indicating the opposite. For BSBM, the contrast is even extreme. Fig. 3e
highlights an even further problem with DBSB and BSBM. For these two benchmarks,
the variation in BGP-restricted f-TP lies mostly in the lower end of the spectrum, which
indicates that these benchmarks cannot be used to test with queries in which triple pat-
terns contribute unevenly to the pruning of intermediate results (cf., Section 2.2).

Finally, consider Fig. 3f, which compares benchmark queries using join-restric-
ted f-TP (mean). One can observe two important limitations. First, both LUBM and
SP2Bench queries sparsely cover the spectrum of possible values. Second, although
BSBM and DBSB are much more diverse, they cover completely different ends of the
spectrum. A system can generate completely different query plans for these two scenar-
ios, and therefore, stress testing should use workloads that include both scenarios.
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3.3 Summary of Findings

In summary, the best known benchmarks (including DBSB, which is based on actual
query logs), individually, are not sufficiently diverse to test the strengths and weak-
nesses of different physical design choices employed by RDF systems. Aggregating
results from multiple benchmarks is not a good solution to the diversity problem either.
First, the underlying datasets have completely different characteristics; therefore, we
may get queries with completely disjoint distributions across the structural and data-
driven features. For example, even though it may appear, based on Fig. 3f, that DBSB
and BSBM complement each other (i.e., they cover the opposite ends of the set of pos-
sible x-axis values), Fig. 3a suggests that it is not quite so. The problem is that these
two benchmarks do not complement each other on all possible features. Hence, in an
aggregated (hypothetical) benchmark, we would still be missing queries with high car-
dinality and high join-restricted f-TP selectivity values. Second, scalability is an issue.
It is not clear (i) how we can generate more queries given that some of the above-
mentioned benchmarks have a fixed number of queries, or (ii) how results from multi-
ple benchmarks should be combined given that each benchmark has its own scalability
restrictions. Our benchmark is designed to address these issues.

4 Waterloo SPARQL Diversity Test Suite (WatDiv)

WatDiv consists of multiple tools4 that enable diversified stress testing of RDF data
management systems:

– The data generator generates scalable datasets at user-specified scale factors—a
common feature of benchmarks. A more interesting feature is that data are gener-
ated according to the WatDiv schema5 with customizable value distributions.

– The query template generator traverses the WatDiv schema and generates a diverse
set of query templates (which is the first step in generating a workload for the stress
tests). Users can specify the number of query templates to be generated as well as
certain restrictions on the query templates such as the maximum number of triple
patterns or whether predicates in triple patterns should be bound.

– Given a set of query templates, the query generator instantiates these templates
with actual RDF terms from the dataset (which is the second and last step in gener-
ating a workload for the stress tests). The number of queries to be instantiated per
query template can be specified by users.

– Given a WatDiv dataset and test workload, for each query in the workload, the
feature extractor computes the structural and data-driven features discussed in Sec-
tion 2. For this to work, the tool needs to point to a third party RDF data manage-
ment system that is already installed on the system.

Dataset Description: What distinguishes WatDiv datasets from existing RDF bench-
marks is the diversity of the structuredness: some entities in WatDiv are well-structured,

4 http://db.uwaterloo.ca/watdiv/
5 http://db.uwaterloo.ca/watdiv/watdiv-data-model.txt

http://db.uwaterloo.ca/watdiv/
http://db.uwaterloo.ca/watdiv/watdiv-data-model.txt
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meaning that they contain few optional attributes, while some others are less well-
structured [10]. We discuss in Section 4 that this enables the generation of test queries
that are far more diverse in their data-driven features.

Three properties contribute to the diversity of WatDiv. First, instances of the same
entity type (i.e., class) do not necessarily have the same properties. Consider the differ-
ent types of entities used in WatDiv.6 Product instances may be associated with different
Product Categories (e.g., Book, Movie, Classical Music Concert, etc.), but depending
on the category a product belongs to, it will have a different set of properties. For exam-
ple, products that belong to the category “Classical Music Concert” have the properties
opus, movement, composer and performer (in addition to the properties that are com-
mon to every product), whereas products that belong to the category “Book” have the
properties isbn, bookEdition and numberOfPages.

Second, even within a single product category, not all instances share the same set
of properties. For example, while isbn is a mandatory property for books, bookEdition
(Pr = 0.5) and numberOfPages (Pr = 0.25) are optional properties, where Pr in-
dicates the probability that an instance will be generated with that property. Users are
able to modify the WatDiv schema, hence these probabilities.

Third, a group of attributes can be correlated, which means that either all or none of
the correlated attributes in that group will be present in any instance of the entity type.
For example, opus and movement are two correlated properties for “Classical Music
Concert” products (cf. <pgroup> construct in the WatDiv dataset schema).

Test Queries: The benchmark queries are generated in two steps. First, a set of query
templates are created by performing a random walk over the graph representation of
the schema of the dataset (i.e., query template generator). In this regard, we use the
following (internal) representation: every entity type in the schema corresponds to a
graph vertex, relationships among entity types (i.e., which correspond to RDF predi-
cates in the instantiated dataset) are represented using graph edges, and each vertex is
annotated with the set of properties of that entity type. This produces a set of BGPs
with a maximum n triple patterns, where n was set to 15 in our experiments. Note that
we generate BGPs with triple patterns that have unbound subjects and objects, whereas
their predicates are bound. Then, k uniformly randomly selected subjects/objects are
replaced with WatDiv-specific placeholders (i.e., placeholders are enclosed within per-
centage [%] signs in the benchmark). In the second step, placeholders in each query
template are instantiated with RDF terms from the WatDiv dataset (i.e., query genera-
tor). To this end, the WatDiv tools maintain, for each placeholder, a set of values that
are applicable to that placeholder, and during the instantiation step, a value is drawn
uniformly at random. For the study in this paper, we generated 12500 test queries from
a total of 125 query templates (i.e., the same number of queries we sampled in DBSB).
These queries are available online.7

Discussion: In Fig. 2a–2d and Fig. 3a–3f, we characterize the aforementioned 12500
WatDiv test queries. With respect to most of the structural query features, WatDiv has
comparable characteristics to DBSB and it is far more diverse than LUBM, SP2Bench

6 http://db.uwaterloo.ca/watdiv/#dataset
7 http://db.uwaterloo.ca/watdiv/stress-workloads.tar.gz

http://db.uwaterloo.ca/watdiv/#dataset
http://db.uwaterloo.ca/watdiv/stress-workloads.tar.gz
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and BSBM (cf., Fig. 2a–2c). For example, the mean join vertex degree values are
densely distributed between 2.0 and 10.0, indicating a rich mix of queries. Further-
more, with respect to join vertex types, WatDiv has a much more balanced distribution
than DBSB: a significant 18.0% of queries in the WatDiv workload have OO+-type join
vertices, compared to only 4.4% in DBSB, and 61.3% versus 5.4% for queries with
SO+joins.

With respect to most of the data-driven features, WatDiv is far more diverse, often
filling in the gaps that are not supported by existing benchmarks (cf., Fig. 3d, 3e and
3f). For example, while DBSB and BSBM cover only the opposite ends of the spectrum
of mean join-restricted f-TP selectivity values, WatDiv covers the full spectrum (cf.,
Fig. 3f). With respect to mean f-TP selectivity (hence, also standard deviation), Wat-
Div covers a lower range of values than DBSB and other benchmarks (cf., Fig. 3b–3c).
This is because in DBSB there are unselective queries that return the whole dataset, that
is, the subjects, predicates and objects in a triple pattern are all unbound. In contrast, re-
call from Section 4 that for our evaluation we generated queries in which the predicates
in a triple pattern are bound (enabling this feature in WatDiv is a configuration option).
Therefore, for this feature WatDiv complements the other benchmarks. Overall, due to
the comprehensiveness of WatDiv, it has enabled us to reveal performance issues about
existing RDF systems that were missed in studies that used the other four benchmarks.

5 Evaluation of RDF Systems

We used WatDiv to evaluate a number of existing RDF data management systems. In
this section, we report our experimental results and discuss various issues with existing
systems.

5.1 Systems Under Test

RDF systems can be classified broadly into two categories in terms of their data rep-
resentations: (i) tabular and (ii) graph-based. For tabular implementations, one option
is to represent data in a single large table. While earlier triplestores followed this ap-
proach [8,9], it has been demonstrated that maintaining redundant copies with different
sort orders and indexes can be much more effective [19]. Consequently, in our eval-
uations we include the popular prototype RDF-3x [19] (v0.3.7) that follows the latter
approach. It has also been argued that grouping data can significantly improve per-
formance for some workloads [22]. Hence, a second option is to group data by RDF
predicates, where data are explicitly partitioned into multiple tables (one table per pred-
icate) and the tables are stored in a column-store [1]. We test the effectiveness of this
approach on MonetDB [15] (v1.7), which is a state-of-the-art column-store. A third op-
tion is to natively represent RDF graph structure, for which we use the prototype system
gStore [24] (v0.2). We also test three industrial systems, namely, Virtuoso Open Source
(VOS) [11] (v6.1.8 and v7.1.0) and 4Store [13] (v1.1.5). Both VOS and 4Store group
and index data primarily based on RDF predicates. Furthermore, VOS 6.1 is a row-store
and VOS 7.1 is a column-store.
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5.2 Experimental Setup

In our experiments, we use a commodity machine with AMD Phenom II ×4 955
3.20 GHz processor, 16 GB of main memory and a Seagate 3.AA hard disk drive with
100 GB of free space at the time of experimentation. The operating system on the ma-
chine is Ubuntu 12.04 LTS.

In this paper, our objective is to understand how well state-of-the-art RDF systems
perform on a diverse SPARQL workload; however, we do not intend to test the scal-
ability of these systems given more computational nodes and/or CPUs. Therefore, we
restrict each system to use single-threading. WatDiv is equally suitable for scalability
experiments, but these results are not included in this paper.

In our stress-tests we use two versions of the WatDiv dataset, one generated at scale-
factor 100 and the other at 1000, which correspond to approximately 10 million and 100
million triples, respectively. Recall from Section 4 that we use 12500 queries generated
from 125 query templates.

We evaluate the systems using a warm cache. Therefore, we generate two work-
loads: a warmup workload and a test workload, both containing the same 12500 queries.
On each system, first the warmup workload and then the test workload is executed. To
achieve higher confidence, we repeat the experiments 5 times. Furthermore, to reduce
the effects of query interactions within the test workload, every time, the sequence of
queries in the test workload is randomized (the warmup experimental run is just an-
other randomized test run). This way, for each query in a test sequence, we measure
and record its execution time as well as various structural and data-driven features about
that query. For practical reasons, whenever query execution exceeds 60 seconds, we au-
tomatically timeout, proceed with the next query in the sequence, and ignore that query
in the consecutive runs for that system.

5.3 Results

The experimental results are summarized in Fig. 4a–4d. The complete results with error
margins are available in the aforementioned online version of the paper. Fig. 4a displays,
for each system, the total execution time (averaged over the five randomized sequences)
of the test workload. Fig. 4b depicts, for each system, the percentage of queries in the
workload that particular system is the fastest (timeouts are ignored) or up to 10 times
slower than the fastest system, and so on. Fig. 4c–4d display for each query in the
workload (x-axis), the query execution time (in milliseconds) of the fastest as well as the
slowest system for that query (which may be different systems for different queries). For
presentation purposes, queries are sorted according to their maximum execution times.
Note that for some queries, the maximum execution time is capped at 60 seconds, which
marks the timeout threshold.

gStore ran into errors during the execution of some of the queries: we do not con-
sider these cases in our discussions. Consequently, the percentages for gStore in Fig. 4b
do not add up to 100%. Furthermore, gStore timed out on the queries on the larger
dataset, hence, we excluded it from Fig. 4b.

5.4 Observations

Regarding Fig. 4a, we make two observations. First, VOS (and to some extent RDF-
3x) perform much better than the other three systems on the larger dataset. Second,
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RDF-3x
VOS [6.1]

VOS [7.1]

MonetDB

4Store
gStore

10M triples 58,312 41,612 51,268 48,329 94,289 n/a
100M triples 97,409 75,224 74,997 139,015 260,045 n/a

(a) Total workload execution time (in seconds) for the systems under test
10M triples 100M triples

RDF-3x
VOS [6.1]

VOS [7.1]

MonetDB

4Store
gStore

RDF-3x
VOS [6.1]

VOS [7.1]

MonetDB

4Store
gStore

fastest 11.4% 6.5% 18.7% 31.7% 0.8% 30.9% 20.9% 0.0% 22.6% 56.5% 0.0% n/a
1–10×

sl
ow

er

77.2% 67.5% 63.4% 65.0% 49.6% 35.8% 60.9% 59.1% 54.8% 31.3% 53.0% n/a
10–100× 6.5% 23.6% 13.0% 1.6% 41.5% 2.4% 13.9% 40.0% 20.0% 2.6% 21.7% n/a
100–1K× 3.3% 1.6% 4.1% 0.0% 0.8% 0.0% 3.5% 0.9% 1.7% 6.1% 15.7% n/a
1K–10K× 1.6% 0.8% 0.8% 1.6% 7.3% 0.0% 0.0% 0.0% 0.9% 3.5% 7.0% n/a

10K–100K× 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.9% 3.5% 7.0% n/a

(b) Performance breakdown (10M and 100M triples)
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(c) Gap between the recorded execution times
of the fastest and slowest systems at 10M
triples (per query instance)
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(d) Gap between the recorded execution times
of the fastest and slowest systems at 100M
triples (per query instance)

Fig. 4: WatDiv Results: Robustness of Existing Systems

although VOS has the lowest total execution time for the whole workload (Fig. 4a), it is
the fastest system in not more than 23 percent of the queries (Fig. 4b). This highlights
an interesting trade-off between robustness across a diverse set of queries versus speed
within a specific type of workload.

Note that no single system is the absolute winner in all of the queries (cf., Fig. 4b.
Furthermore, note that each system performs poorly (i.e., a few orders of magnitude
worse than the fastest system) in a significant percentage of queries in the workload.

The results in Fig. 4c–4d highlight two more issues. First, for most queries, there
can be 2 orders of magnitude difference between the fastest and slowest system, and
in the worst case, this gap can be as large as 5 orders of magnitude (note that this gap
exists even when query execution times are grouped by query template). Second, the
worst case gap widens from the smaller to the larger dataset.

In summary:

– No single system is a sole winner across all queries;
– No single system is the sole loser across all queries, either;
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Fig. 5: Detailed evaluation: results are analyzed across various combinations of features.

– For some queries, there can be as much as 5 orders of magnitude difference in the
performance (i.e., query execution time) between the best and the worst system for
that query; and

– The winner in one query may timeout in another.

5.5 Detailed Analysis

In this section, we provide a more detailed evaluation by drilling down into particular
query features (and combinations thereof). Hypothetically speaking, it is possible to
perform such analyses using any possible combination of features (including any addi-
tional feature not covered by our study). However, due to space limitations, we focus
on a few special cases where the results stand out, and while doing so, we demonstrate
how WatDiv can be used for stress testing.

As our first exercise, we quantify an observation that we made in Section 2.2. That
is, we want to test whether systems behave differently for queries in which all (or most)
triple patterns contribute almost equally to the overall “selectiveness” of the query
(Case-A) versus the case in which the overall “selectiveness” of the query can be at-
tributed to a single (or few) triple patterns (Case-B). To distinguish between these two
cases, we rely on the standard deviation of BGP-restricted f-TP selectivity, where a low
(resp., high) standard deviation implies Case-A (resp., Case-B). For this exercise, we
take into account only the queries with result cardinality≤ 2000 (i.e., selective queries).
We divide the spectrum of standard deviation values into three intervals such that we
have an equal number of queries in each interval (approximately 3300 queries per inter-
val). Fig. 5a depicts, for each system, the geometric mean of the query execution times
of all queries in each of the three intervals. We note that, for all four systems, the (mean)
query execution times decrease as the standard deviation of BGP-restricted f-TP selec-
tivity increases. These results indicate that, while systems have integrated techniques to
early-prune intermediate results [18], these techniques do not seem to be effective for
Case-A.

Next, we demonstrate a case in which different systems show varied behavior on
a particular type of workload. In this exercise, we consider only the queries with a
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single join vertex and result cardinality ≤ 2000. Then, based on the mean of BGP-
restricted f-TP selectivity, we devised two types of workloads: one in which queries
have very low mean BGP-restricted f-TP selectivity, and the other in which the mean
is high (each interval contains approximately 2200 queries). The former workload cap-
tures those queries in which due to data distributions, the query itself becomes much
more selective than the individual triple patterns participating in the query. Fig. 5b il-
lustrates an interesting trend: while the five systems behave similarly to some extent for
the latter workload, they have completely differing performance in the former one. An
investigation that may reveal a reason for this observation is beyond the scope of this
paper.

Last, we test whether systems are biased towards a particular query structure (i.e.,
linear vs. star/snowflake). To this end, we select two sets of queries: (i) those queries
with mean join vertex degree ≤ 3.0 and join vertex count ≥ 3 (representing linear
queries), and (ii) those with mean join vertex degree ≥ 5.0 and join vertex count ≤
2 (representing star or snowflake queries). The results in Fig. 5c demonstrate that all
of the four systems are indeed biased against linear queries, highlighting a room for
improvement.

6 Conclusions

In this paper, we discuss WatDiv. First, we introduce a set of query features that can
be used for assessing the diversity of the data and workloads in a SPARQL benchmark.
We explain why these features are important and how they relate to special test cases
that need to be included in a stress testing tool. Then, we discuss our experimental
evaluation of existing SPARQL benchmarks with a specific emphasis on identifying
test cases that are not handled by these benchmarks, which led us to the development of
WatDiv. Our experimental evaluation of existing RDF data management systems with
WatDiv demonstrate that these systems are not sufficiently robust across a diverse set of
queries. Then, we use WatDiv to drill down into specific combinations of query features
to reveal problems that only this type of stress testing could reveal. Specifically, we
illustrate cases where all of the evaluated systems show bias against a particular type of
workload, or where a particular system has some advantage over the others for a specific
type of workload. We believe that evaluations that involve stress testing as demonstrated
in this paper are crucial to build more robust RDF data management systems. For future
work, we consider extending WatDiv to support provenance and temporal data.
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